EIAab
首页  >  重组蛋白  >  Human NPAS2 Recombinant Protein
NPAS2 (基因名), Neuronal PAS domain-containing protein 2 (蛋白名), npas2_human.
产品名称:

Human NPAS2/ Neuronal PAS domain-containing protein 2 Recombinant Protein
神经元PAS结构域蛋白2

货号:

R13384h

商标:
EIAab®
监管等级:
别名:

Basic-helix-loop-helix-PAS protein MOP4, Class E basic helix-loop-helix protein 9, Member of PAS protein 4, PAS domain-containing protein 4, bHLHe9, Neuronal PAS2, BHLHE9, MOP4, PASD4

序列号:
Q99743
来源:
E.coli
种属:
Human
标签:
His
纯度:
>90% by SDS-PAGE
浓度:
Reconstitution Dependent
形态:
Liquid
内毒素水平:
Please contact protein@eiaab.com The technician for more information.
应用:
存储缓冲液:
50mM NaH2PO4, 500mM NaCl Buffer with 500mM Imidazole, 10%glycerol(PH8.0)
存储:
Store at -20°C. (Avoid repeated freezing and thawing.)
研究领域:
-
Human NPAS2 Protein
规格 & 价格: cart
×
Human NPAS2 Protein
邮箱 *
消息 *
Please 登录.
产品说明书
说明书: 下载说明书
MSDS: MSDS
在线询价


R&D 技术数据
更多信息,请参阅手册,或联系我们的技术支持: tech@eiaab.com.
基因位点
Cytogenetic band: 2q11.2 by HGNC 2q11.2 by Entrez Gene 2q11.2 by Ensembl
NPAS2 Gene in genomic location: bands according to Ensembl, locations according to GeneLoc (and/or Entrez Gene and/or Ensembl if different)
基因位点
通用注释


亚单元:
Component of the circadian clock oscillator which includes the CRY proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS and the PER proteins. Efficient DNA binding requires dimerization with another bHLH protein. Forms a heterodimer with ARNTL/BMAL1 and this heterodimerization is required for E-box-dependent transactivation. Interacts with NCOA3, KAT2B, CREBBP and EP300.


功能:
Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. The NPAS2-ARNTL/BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. NPAS2 plays an important role in sleep homeostasis and in maintaining circadian behaviors in normal light/dark and feeding conditions and in the effective synchronization of feeding behavior with scheduled food availability. Regulates the gene transcription of key metabolic pathways in the liver and is involved in DNA damage response by regulating several cell cycle and DNA repair genes.


亚细胞位置:
Nucleus


该产品尚未在任何出版物中被引用。

[1].
"Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk."

[2].
"Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin's lymphoma."

[3].
"The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer."

[4].
"The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response."

[5].
"Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system."
关闭
Sample Data
关闭
Sample Data
关闭
Sample Data
用户中心 close
购物车 close
我的收藏 close
我的足迹 close
清除
产品对比 close
用户中心
购物车
我的收藏
我的足迹
产品对比
回到顶部
通知
new 咨询
规格 数量 单价 (¥) 小计 1 (¥)
小计 2:
triangle
规格 数量 单价 (¥)
你想做我们的代理并得到更低的折扣吗?
请联系我们:
电话:027-59234612(+86)
传真:027-59234610(+86)
邮箱:sales@eiaab.com